
Neural Networks 154 (2022) 56–67

D
P
a

b

c

d

e

f

g

h

i

r
a
H
e

(
(
d
(
(
l

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Deep reinforcement learning guided graph neural networks for brain
network analysis
Xusheng Zhao a,b, Jia Wu c, Hao Peng d,∗, Amin Beheshti c, Jessica J.M. Monaghan e,
avid McAlpine f, Heivet Hernandez-Perez f, Mark Dras c, Qiong Dai a,b,∗, Yangyang Li g,
hilip S. Yu h, Lifang He i

Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
School of Computing, Macquarie University, Sydney, Australia
Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing, China
National Acoustic Laboratories, Sydney, Australia
Department of Linguistics, The Australian Hearing Hub, Macquarie University, Sydney, Australia
National Engineering Laboratory for Risk Perception and Prevention (NEL-RPP), CAEIT, Beijing, China
Department of Computer Science, University of Illinois at Chicago, IL, USA
Computer Science & Engineering, Lehigh University, PA, USA

a r t i c l e i n f o

Article history:
Received 9 July 2021
Received in revised form 25 May 2022
Accepted 28 June 2022
Available online 3 July 2022

Keywords:
Brain network
Network representation learning
Graph neural network
Deep reinforcement learning

a b s t r a c t

Modern neuroimaging techniques enable us to construct human brains as brain networks or con-
nectomes. Capturing brain networks’ structural information and hierarchical patterns is essential for
understanding brain functions and disease states. Recently, the promising network representation
learning capability of graph neural networks (GNNs) has prompted related methods for brain network
analysis to be proposed. Specifically, these methods apply feature aggregation and global pooling to
convert brain network instances into vector representations encoding brain structure induction for
downstream brain network analysis tasks. However, existing GNN-based methods often neglect that
brain networks of different subjects may require various aggregation iterations and use GNN with
a fixed number of layers to learn all brain networks. Therefore, how to fully release the potential
of GNNs to promote brain network analysis is still non-trivial. In our work, a novel brain network
representation framework, BN-GNN, is proposed to solve this difficulty, which searches for the optimal
GNN architecture for each brain network. Concretely, BN-GNN employs deep reinforcement learning
(DRL) to automatically predict the optimal number of feature propagations (reflected in the number
of GNN layers) required for a given brain network. Furthermore, BN-GNN improves the upper bound
of traditional GNNs’ performance in eight brain network disease analysis tasks.

© 2022 Published by Elsevier Ltd.
1. Introduction

With the advancement of modern neuroimaging, using neu-
oimaging data effectively has become a research hotspot in both
cademia and industry (Alexander, Lee, Lazar, & Field, 2007;
uettel, Song, McCarthy, et al., 2004). Many of these techniques,
.g., diffusion tensor imaging (DTI) (Alexander et al., 2007) and

∗ Corresponding authors.
E-mail addresses: zhaoxusheng@iie.ac.cn (X. Zhao), jia.wu@mq.edu.au

J. Wu), penghao@buaa.edu.cn (H. Peng), amin.beheshti@mq.edu.au
A. Beheshti), jessica.monaghan@nal.gov.au (J.J.M. Monaghan),
avid.mcalpine@mq.edu.au (D. McAlpine), heivet.hernandez-perez@mq.edu.au
H. Hernandez-Perez), mark.dras@mq.edu.au (M. Dras), daiqiong@iie.ac.cn
Q. Dai), liyangyang@cetc.com.cn (Y. Li), psyu@uic.edu (P.S. Yu),
ih319@lehigh.edu (L. He).
ttps://doi.org/10.1016/j.neunet.2022.06.035
893-6080/© 2022 Published by Elsevier Ltd.
functional magnetic resonance imaging (fMRI) (Huettel et al.,
2004), enable us to construct human brains as topological net-
works (known as ‘‘brain networks’’ or ‘‘connectomes’’) (Urbanski,
De Schotten, Rodrigo, et al., 2008; Van Den Heuvel & Pol, 2010).
Unlike brain images, which consist of pixels, nodes/vertexes and
edges/links are components of brain networks. Specifically, nodes
in networks usually indicate regions of interest (ROIs), while
edges represent connectivity or correlations between ROI pairs.
There are often distinct differences between the brain networks
derived from different imaging modalities (Liu et al., 2018). For
example, DTI-derived brain networks encode the structural con-
nections among ROIs based on white matter fibers, while fMRI-
derived brain networks record the functional activity routes of
the regions. Both DTI-derived and fMRI-derived human brain
networks are well-researched and applied to the whole-brain
analysis.

https://doi.org/10.1016/j.neunet.2022.06.035
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2022.06.035&domain=pdf
mailto:zhaoxusheng@iie.ac.cn
mailto:jia.wu@mq.edu.au
mailto:penghao@buaa.edu.cn
mailto:amin.beheshti@mq.edu.au
mailto:jessica.monaghan@nal.gov.au
mailto:david.mcalpine@mq.edu.au
mailto:heivet.hernandez-perez@mq.edu.au
mailto:mark.dras@mq.edu.au
mailto:daiqiong@iie.ac.cn
mailto:liyangyang@cetc.com.cn
mailto:psyu@uic.edu
mailto:lih319@lehigh.edu
https://doi.org/10.1016/j.neunet.2022.06.035

X. Zhao, J. Wu, H. Peng et al. Neural Networks 154 (2022) 56–67

m
m
h
d
d
i
h
p
r
a
r
e
m
&
m
d
c
m

b
e
j
t
r
t
t
a
n
L
a
S
a
H
m
&
b
t
d
w
f
i
l
b
c
a
n

f
c
c
f
e
t
n
d
g
w
s
i
2
t
r
s
n
w

(
n
a
r
r

t
u
n

(
m
t

a
t
g
D
r
w

2

2

l

The computational analysis of brain networks is becoming
ore and more popular in healthcare because it can discover
eaningful structural information and hierarchical patterns to
elp understand brain functions and diseases. Here we take brain
isease prediction as an example. As one of the most common
iseases affecting human health, brain disease has a very high
ncidence and disability rate, bringing enormous economic and
uman costs to society (Parisot et al., 2018). Considering the com-
lexity and diversity of the predisposing factors of brain diseases,
esearchers often analyze the brain network states of subjects to
ssist in inferring the types of brain diseases and then provide
eliable and effective prevention or treatment guidelines. For
xample, as a geriatric epidemic, Alzheimer’s disease (AD) often
anifests as memory and visual–spatial skill impairments (Braak
Braak, 1991; Zhang et al., 2018). Although the existing medical
ethods cannot effectively treat AD patients, it is possible to
elay the onset of AD by tracking the subject’s brain network
hanges and performing interventional therapy in the stage of
ild cognitive impairment (Huang & Mucke, 2012).
One of the essential techniques in brain network analysis is

rain network representation (a.k.a., network embedding) (Cao
t al., 2017; Liu et al., 2018), which aims to embed the sub-
ects’ brain networks into meaningful low-dimensional represen-
ations. These network representations make it easy to sepa-
ate damaged or special brain networks from normal controls,
hereby providing supplementary or supporting information for
raditional clinical evaluations and neuropsychological tests. As
popular network/graph representation/embedding framework
owadays, graph neural networks (GNNs) (Hamilton, Ying, &
eskovec, 2017; Kipf & Welling, 2017; Velickovic et al., 2018)
pplies convolution to the network structure (Peng et al., 2020;
un et al., 2021), which learns deep features while reasoning
bout relational induction within the network (LeCun, Bengio, &
inton, 2015; Liu, Xue et al., 2020; Ma et al., 2021). Therefore,
any GNN-based embedding algorithms (Arslan, Ktena, Glocker,
Rueckert, 2018; Ktena et al., 2018; Zhang et al., 2018) for

rain networks have emerged recently. For brain analysis tasks
hat treat a subject’s brain network as an instance, such as brain
isease prediction, GNN-based methods first use stackable net-
ork modules to aggregate information from neighbors at dif-

erent hops. This way, they capture brain networks’ structural
nformation and hierarchical patterns. More specifically, GNN
earns node-level feature representations by aggregating neigh-
or information edgewise, where the number of GNN layers
ontrols the total degree of iterative aggregations. Then they
pply global pooling on the node-level feature matrices to obtain
etwork-level representations.
Although GNN-based analysis strategies have been success-

ully introduced into various brain network analysis tasks, in-
luding brain network classification (Arslan et al., 2018) and
lustering (Liu et al., 2018), it is still challenging to release the
ull potential of GNNs on different brain networks. Specifically,
xisting works usually utilize GNN with a fixed number of layers
o learn all brain network instances, ignoring that different brain
etworks often require distinct optimal aggregation iterations
ue to structural differences. On the one hand, more aggre-
ation iterations mean considering neighbors at farther hops,
hich may prompt some brain networks to learn better repre-
entations. Unfortunately, increasing the number of aggregations
n GNN may also cause over-smoothing problems (Chen et al.,
020; Oono & Suzuki, 2019), which means that all nodes in
he same network have indistinguishable or meaningless feature
epresentations. On the other hand, it is infeasible to manually
pecify the number of iterative aggregations for different brain
etworks, especially when the instance set is large. A straightfor-

ard method to alleviate these problems is to deepen the GNN

57
model with skip-connections (a.k.a., shortcut-connections) (Gao
& Ji, 2019; Li, Muller, Thabet, & Ghanem, 2019), which avoid
gradient vanishing and a large number of hyperparameter set-
tings. However, this is a sub-optimal strategy because it fails to
automate GNN architectures for different brain networks without
manual adjustments.

To solve the above problems, a novel GNN-based brain net-
work embedding framework (BN-GNN) designed for brain net-
work analysis is developed. With the recent proposal and ap-
plication of meta-policy learning (Lai, Zha, Zhou, & Hu, 2020;
Zha, Lai, Zhou, & Hu, 2019), we expect a meta-policy that auto-
matically determines the optimal number of feature aggregations
(reflected in the number of GNN layers) for a given brain network.
Specifically, we heuristically model the optimization and decision
iteration of a meta-policy as a Markov decision process (MDP).
First of all, we regard the adjacency matrix of a randomly sampled
brain network as the initial state and input it into the policy in
MDP. Secondly, we guide the construction of the GNN in MDP
based on the action (an integer) corresponding to the maximum
Q value output by the policy. Here the action value determines
the stacking of GNN layers, which controls the total count of
feature aggregations on the current brain network. Thirdly, we
pool the node features into a network representation. Then we
perform network classification to optimize the current GNN and
employ a novel strategy to calculate the current immediate re-
ward. Fourthly, we sample the next network instance through
a heuristic state transition strategy and record the state–action–
reward–state quadruple of this process. In particular, we apply
the double deep q-network (DDQN) (Mnih et al., 2015; Van Has-
selt, Guez, & Silver, 2016), a classic deep reinforcement learning
(DRL) (Arulkumaran, Deisenroth, Brundage, & Bharath, 2017) al-
gorithm, to simulate and optimize the policy. Finally, we utilize
the trained policy (i.e., meta-policy) as meta-knowledge to guide
the construction and training of another GNN and implement
specific brain network analysis tasks.

Overall, the main results are condensed as:
• A novel brain network representation learning framework

i.e., BN-GNN 1) through GNN and DRL is proposed to assist brain
etwork analysis tasks. In this way, the number of GNN feature
ggregations can be altered for different brain networks, thereby
eleasing the full potential of traditional GNNs in brain network
epresentation learning.

• This is the first study in the field of brain network analysis
o introduce DRL into the GNN model. We are also the first to
se GNNs with different layers to learn different subjects’ brain
etworks.

• Experiments on eight brain network disease analysis datasets
e.g., BP-DTI and HA-EEG) show that BN-GNN stands out among
any advanced algorithms, improving the upper bound of tradi-

ional GNNs’ performance.
The remainder of the article is briefly described as: Sections 2

nd 3 describe related work and preliminary knowledge, respec-
ively. Section 4 details the implementation of BN-GNN with
raph convolutional network (GCN) (Kipf & Welling, 2017) and
DQN (Van Hasselt et al., 2016). Section 5 gives the experimental
esults and corresponding analysis. Section 6 summarizes our
ork.

. Related work

.1. Graph neural networks

GNNs are currently the preferred strategy for processing topo-
ogical graph data, which follows the principle that neighbor

1 https://github.com/RingBDStack/BNGNN

X. Zhao, J. Wu, H. Peng et al. Neural Networks 154 (2022) 56–67

i
w
i
G
c
w
p
2
s
o
a
t
m
o
e

2

w
F
C
f
o
G
a
e
n
c
e
t
a
Z
G
v
a
i
Y
n
t
r
i

d
s
L
(
e
w
p
t
G
b
d

2

s
L
r
t
r
t
d

a

G

l
c
f
a

nformation affects the feature embedding of central nodes edge-
ise. Spectral- and spatial-based are two major labels of ex-

sting GNN models. A representative product of GNN models is
CN (Kipf & Welling, 2017), which is inspired by the traditional
onvolutional operations on images in the Euclidean space. To
iden and improve aggregation performance bounds and ex-
lainability, the graph attention network (GAT) (Velickovic et al.,
018) refines the relative importance of neighbors from the per-
pective of target nodes. To improve the aggregation efficiency
f large-size graphs, GraphSAGE (Hamilton et al., 2017) extracts
consistent and predefined number of local neighbors for each

arget one. In addition, many GNN variants based on the above
ethods or frameworks have been proposed, and they have made
utstanding contributions, such as in clinical medicine (Zhang
t al., 2018).

.2. Reinforcement learning guided graph neural networks

Recently, with the advances of RL, many works combine RL
ith GNNs to further raise the performance boundary of GNNs.
or example, Dou et al. (2020) proposed a GNN algorithm, i.e.,
ARE-GNN to improve the capability to recognize fraudsters in
raud inspection tasks. CARE-GNN first sorts the neighbors based
n their credibility and then uses RL to guide the traditional
NN to filter out the most valuable neighbors for each node to
void fraudsters from interfering with normal users. Peng, Zhang
t al. (2021) proposed a novel recursive and reinforced graph
eural network framework learn more discriminative and effi-
ient node representation from multi-relational graph data. Peng
t al. (2022) proposed a GNN that considers different relations
o achieve network representation, which is based on multi-
gent RL for relation importance assignment. Gao, Yang, Zhang,
hou, and Hu (2020) proposed a graph NAS algorithm, namely
raphNAS. GraphNAS first utilizes a recurrent network to create
ariable-length strings representing the architectures of GNNs
nd then applies RL to update the recurrent network for max-
mizing quality of model building. Nishi, Otaki, Hayakawa, and
oshimura (2018) proposed a GCN-based algorithm for traffic sig-
al control called NFQI, which applies a model-free RL approach
o learn responsive traffic control in order to deal with tempo-
ary traffic demand changes when environmental knowledge is
nsufficient.

Since deep RL (DRL) combines the perception capability of
eep learning with the decision capability of RL, it is a new re-
earch hotspot in artificial intelligence. For example, Yan, Ge, Wu,
i, and Li (2020) proposed a virtual network embedding algorithm
i.e., V3C+GCN) that combines DRL with a GCN-based module. Lai
t al. (2020) proposed a meta-policy framework (i.e., Policy-GNN),
hich adaptively learns an aggregation strategy to use DRL to
erform various aggregation iterations on different nodes. Though
he above methods directly or indirectly use RL or DRL to improve
NNs, there is still no work using DRL to guide GNNs to assist
rain network analysis, which often requires different models for
ifferent brain networks.

.3. GNN-based brain network representation learning

Unlike traditional shallow methods for brain network repre-
entation learning, such as tensor decomposition (Cao et al., 2017;
iu et al., 2018), some works use GNNs to capture deep feature
epresentations of brain networks for downstream brain analysis
asks. Concretely, Li et al. (2020) proposed a PR-GNN that includes
egularized pooling layers, which calculates node pooling scores
o infer which brain regions are obligatory parts of certain brain
isorders. Bi et al. (2020) proposed an aggregator that applies
58
extreme learning machines (ELMs), which avoids tuning itera-
tions and widens the feature passing performance boundaries.
In addition, they provided a GNEA model based on the afore-
mentioned aggregator to enable brain graph analysis. Hi-GCN
method proposed by Jiang, Cao, Xu, Yang, and Zaiane (2020) can
perform hierarchical embedding of brain networks. In order to
improve the accuracy of brain disease analysis, Hi-GCN considers
graph structure induction and also introduces patient group-level
structural information. Ma et al. (2019) developed an graph learn-
ing algorithm for brain network analysis, namely HS-GCN, which
utilizes two GCNs to build a siamese model and learns brain
network representations by means of supervised metrics. Zhong,
Wang, and Miao (2020) proposed a regularized GNN (i.e., RGNN)
for emotion recognition based on electroencephalogram. Xing
et al. (2021) developed a GCN-based algorithm (i.e., DS-GCNs)
that can condense meaningful representations from functional
connections readily available in neuroanalytical tasks. DS-GCNs
calculate a dynamic functional connectivity matrix with a sliding
window and implement a long and short-term memory layer
based on graph convolution to process dynamic graphs.

Corresponding to unimodal brain connectome studies, GNNs
are also quite popular in multi-modality brain analysis scenar-
ios. For example, Zhang et al. (2018) proposed a GCN model
(i.e., MVGCN) for combining different view information in brain
analysis tasks, helping to distinguish Parkinson’s disease cases
from healthy controls. Gurbuz and Rekik (2021) proposed a multi-
view normalization network based on GNN (i.e., MGN-Net), which
normalizes and combines a set of multi-view brain networks into
one.

Although these GNN-based single- or multi-modality methods
have made significant breakthroughs in many brain network
analysis tasks, they have failed to implement customized aggre-
gation for different subjects’ brain networks in experiments such
as brain disease prediction.

3. Preliminaries

First of all, we formulate the brain network analysis. Next, we
introduce the network representation learning method when the
GNN layer is predefined, MDP, and DRL. The key notations/symbols
are given in Table 1.

3.1. Problem formulation

Generally, a brain connectome can be abstracted as a graph
G = (V , E), where V =

{
v1, . . . , vn

}
indicates the node set,

E contains weighted edges that represent topological relations
among nodes. Let W denote G’s initial weighted matrix, so W(i, j)
means the edge correlation between vi and vj (which may tend
to zero for no or weak connection). Let D =

{
G1, . . . ,Gm

}
be

n ensemble of brain networks based on m brain subjects. We
assume that these network instances have different structures
but the same nodes, where a specific region division strategy
determines the number of nodes. Given the kth brain network
k = (Vk, Ek), we abstract it as a weighted matrix Wk ∈ Rn×n.
We focus on the problem of brain network representation

earning based on DRL-introduced GNNs, which is used for both
lassification and clustering. Specifically, we focus on the classi-
ication task since it is often the research basis for brain network
nalysis. Given dataset D, we assume that the corresponding

network labels Y are known. For convenience, we denote the
training, validation, and test set of D as Dtrain, Dval, and Dtest ,
respectively, where D = Dtrain ∪ Dval ∪ Dtest . Based on the brain
networks in Dtrain∪Dval, we first continuously optimize a policy π .
Next, we employ the trained policy (i.e., meta-policy) to guide the
construction of GNN and utilize the customized GNN to learn the

X. Zhao, J. Wu, H. Peng et al. Neural Networks 154 (2022) 56–67

a
s

a
R
i

F

w
a
g
o
f
f
a
n
a

Â
F

w
Ã
I
f
i
a
t

Table 1
Glossary of notations.
Notation Definition

D; Dtrain; Dval; Dtest The brain network dataset; The training set of D; The validation set of D; The test set of D
G; V ; E The brain network; Nodes in G; Edges in G
S; A The state space in MDP; The action space in MDP
W;A; Â The initial weighted matrix of G; The adjacency matrix of G; The normalized form of Ã
Ã; D̃ The self-loop form of A; The degree matrix of Ã
E; F The network-level feature matrix of D; The node-level feature matrix of G
T The feature transformation operator
C; Ĉ The importance coefficient matrix of G; The normalized form of C
m; n Total count of brain networks of D; Total node count of V
d The vector representation dimension of E or F
l The total number of layers of GNN layers or iterative aggregations
i; j; k These notations represent index variables
s; a; r The state in MDP; The action in MDP; The reword in MDP
t; b The final timestep value of MDP; Set size containing all actions
w The window size of the history records in REW (·)
⊕ The feature combination operation, such as summation and concatenation
π The policy function in MDP or the meta-policy
γ ; ϵ The discount coefficient of R; The epsilon probability of exploration of π

σ (·) The activation function, such as Tanh and ReLU
AGG(·) The feature aggregation function of GNN, such as convolution and attention
REW (·) The immediate reward function in MDP
PER(·) The classification performance metric, such as accuracy.
R The discounted cumulative return in MDP
Qeval;Qtarget The evaluation DNN in DDQN; The target DNN in DDQN
LGNN ;Lpolicy The training loss of GNN; The training loss of meta-policy
ˆ

w
v
G
f

L

node representations of each brain network that meet the num-
ber of feature aggregations. Then, by applying the global pooling
at the last layer of GNN, we convert the node-level feature tensor
into a low-dimensional network-level representation matrix E,
llowing brain network instances with different labels to be easily
eparated. Last, we feed E into the full-connected layer to perform
brain network classification.

3.2. Learning network representations with layer-fixed GNN

GNNs learn node-level feature representations through the
network structure. Given an instance G = (V , E), we receive its
djacency matrix A ∈ Rn×n and initial region features F(0) ∈
n×d(0) , and then express the feature aggregation process of vi ∈ V
n a layer-fixed GNN as follows (Dou et al., 2020):
(l)(i) = σ

(
F(l−1)(i) ⊕ AGG(l)

({
F(l−1)(j) : A(i, j) > 0

}))
, (1)

here F(l−1)
∈ Rn×d(l−1)

and F(l) ∈ Rn×d(l) indicate the input
nd output features of the model. AGG(l) indicates the aggre-
ation module, their superscript (l) indicates that the features
r modules belong to the l-th layer. ⊕ is an operation used to
use the features of vi and its neighbors. σ means the activation
unction like Tanh. It is worth noting that A should be reliable
s it remains unchanged at all layers. Taking graph convolutional
etwork (GCN) (Kipf & Welling, 2017) with two aggregations as
n example, it implements Eq. (1) through convolution:

= D̃−1/2ÃD̃−1/2

(2)
= ReLU (̂AReLU (̂AF(0)T(1))T(2))

, (2)

here Â ∈ Rn×n is the symmetrical normalized form of Ã,
= A + I is the adjacency matrix with the identity matrix

∈ Rn×n added, and D̃ ∈ Rn×n is the degree matrix of Ã. At the
irst layer, since Â encodes each node’s direct (1-hop) neighbor
nformation, ÂF(0) essentially implements the first convolution
ggregation through summation. At the second layer, the con-
inuous multiplication of the adjacency matrix (i.e., ÂReLU (̂A))
makes the neighbor’s neighbor (2-hop) information included in
the second aggregation. Therefore, when GNN models stack and
aggregate more, the receptive field of GNN becomes wider, so

(1)
more neighbors participate in aggregation. In addition, T ∈

59
Rd(0)×d(1) and T(2)
∈ Rd(1)×d(2) are the learnable matrices for feature

transformation of the first and second layer, respectively. Unlike
GCN, which equally distributes the importance of all neighbors,
GAT (Velickovic et al., 2018) counts neighborhood importance
weights through attention when summing their features. Taking
the first layer of a single-head GAT as an example, the node
feature aggregation is as follows:

C(i, j) = (F(0)(i)T(1)
⊕ F(0)(j)T(1))qT

C = softmax(C(i, j)) =
exp(ReLU(C(i, j)))∑

vk∈V (i) exp(ReLU(C(i, k)))

F(1)(i) = ReLU(
∑

vj∈V (i)

ĈF(0)(j)T(1))

, (3)

where F(0)(i) ∈ R1×d(0) represents the initial feature represen-
tation of node vi, T(1)

∈ Rd(0)×d(1) is the feature transformation
matrix whose parameters are shared, ⊕ is the concatenation
operation, and q ∈ R1×2d(1) is the attention feature vector. C(i, j)
is the importance coefficient (a real number) of node vj to node
vi, Ĉ is the normalized form of C, and F(1)(i) ∈ R1×d(1) is the
transformed representation vector of the target vi. Here V (i) ={
vj : A(i, j) > 0

}
indicates the neighbor set of node vi. Similarly,

GAT also controls the number of feature aggregations by changing
the number of layers. After the final aggregation is completed at
the last layer l, GNN-based methods perform global pooling on all
nodes to obtain the final network representation. The process of
global average pooling is described below:

E(i) =
1
n

∑
vj∈V

F(l)i (j), (4)

here E(i) ∈ R1×d(l) and F(l)i (j) are the network-level feature
ector and node-level feature matrix of the ith network instance
i, respectively. Then the cross entropy loss of this part is as
ollows:

GNN = −

∑
Gi∈Dtrain

log(E(i)T(l+1))Y(i)T , (5)

where T(l+1) is the fully connected layer applied as a classifier, Y(i)
indicates the i-th brain instance’s class label.

In brain network disease analysis, most instances can be ab-
stracted as weighted matrices describing the connections among

X. Zhao, J. Wu, H. Peng et al. Neural Networks 154 (2022) 56–67

p
t
t
r
t
p
t

b
B
f
m
w
W
a
p
(
w

Fig. 1. Illustration of our proposed framework BN-GNN for brain network representation learning. The left side of the dotted line illustrates an example of the MDP
rocess. First of all, we treat the adjacency matrix derived from the brain network building module as the current state and input it into the policy. Then we follow
he guiding signals (Q values) output by the policy to decide the current action. Here we treat the index of the selected action in the action space as the action value
o guide the number of aggregations of the current brain network in GNN. After feature aggregation, we employ global pooling to harvest network instance-level
epresentations and train GNN models in MDP. Subsequently, the current reward is calculated by comparing the performance changes on the verification set. Finally,
he transition strategy is applied to obtain the state of the next timestep. To train the policy in MDP, we record the state–action–reward–state quadruple of this
rocess to the memory space and follow the DDQN method to calculate the loss of the policy. On the right side of the dotted line, we apply the trained meta-policy
o guide the training of a new GNN and perform brain network analysis tasks.
D

L

rain regions, but they often do not have initial region features.
esides, there is little research on constructing informative node
eatures and edges for GNN-based brain network learning. A com-
on strategy is to use the initial weighted matrix W associated
ith each brain network G as its initial node features (i.e., F(0) =

) and define a group-level adjacency matrix A for GNN. For ex-
mple, Zhang et al. (2018) defined A as a coarse-grained network
rocessed by k-nearest neighbor (KNN), and Zhang and Huang
2019) constructed the Laplacian operator through the small-
orld model to infer A in the process of representation learning.

However, using the same adjacency matrix for different brain
networks may blur the differences between different networks.
Different from the previous work (Zhang et al., 2018; Zhang
& Huang, 2019), our goal is to generate a separate adjacency
matrix for each brain network and implement network represen-
tation learning for different brain networks based on GNNs with
different layers.

3.3. Markov decision process

MDP is a natural description of sequential decision problems,
used to simulate the random actions and rewards that the agent
can achieve in an environment with Markov properties. Here we
denote the MDP as a quintuple (S, A, π, REW ,R), where S and A
mean the state and action set/space, π is the policy that outputs
the action conditional probability distribution of the input state,
REW : S×A → R is the immediate reward function, and R is the
accumulation of rewards over time (a.k.a, return). The decision
process in each timestep i ∈ [1, t] is as follows: the agent first
perceives the current state si ∈ S and then implement an action
as directed by π . Then, the environment (which is affected by the
action ai) feeds back to the agent the next state si+1 as well as a
reward ri = REW (si, ai). In the standard MDP, our goal is to train
π to maximize the accumulation of discounted returns. The total
return can be expressed in summed form as:

R = r1 + γ r2 + γ 2r3 + · · · + γ t−1rt =

t∑
i=1

γ i−1ri, (6)

where γ ∈ (0, 1) is the discount coefficient used to constrain
future rewards with low reliability. The optimization steps for
policy π are detailed in the next section.
60
3.4. Solving MDP with deep reinforcement learning

In many scenarios, the state space S is huge or inexhaustible.
In this case, it is sub-optimal or infeasible to train the policy π

by maintaining and updating a state–action table. Deep reinforce-
ment learning (DRL) (Arulkumaran et al., 2017) is an effective
solution because it can use neural networks to simulate and
approximate the actual relationship between any state and all
possible actions. Here, we focus on a classic DRL algorithm called
double deep q-learning (DDQN) (Mnih et al., 2015; Van Hasselt
et al., 2016), which uses two deep neural networks (DNNs) to
simulate the policy π . Concretely, in each timestep i, DDQN first
inputs the current state si into the evaluation DNN to get the
predicted values of all actions and regard the action correspond-
ing to the maximum Q value as the current action, which should
conform to the following formula:

ai =

{
random action, w.p. ϵ
argmaxai (Qeval(si, ai)), w.p. 1 − ϵ,

(7)

where ϵ-greedy can make DDQN more portable and avoid the
dilemma of exploration and utilization. The maximum Q value
maxai (Q (si, ai)) is essentially the expected maximum discounted
return in the current state si, and the corresponding Bellman
equation can be expressed as follows:

maxai (Qeval(si, ai)) = max(Ri) = max(ri + γ (ri+1 + γ (ri+2 + · · ·)))
= ri + γ max(Ri+1).

(8)

After determining the current action ai, DDQN uses the reward
function (designed according to the specific environment) to cal-
culate the current actual reward (i.e., ri = REW (si, ai)) and then
performs state transition to obtain the next state si+1. Moreover,
there is a memory space in DDQN that records each MDP process
(also known as ‘‘experience’’ and recorded as a state–action–
reward–state quadruple ⟨si, ai, ri, si+1⟩). To optimize DNNs with
experience replay, DDQN first records the current experience and
then randomly extracts a memory block from the memory space.
For example, through the experience ⟨si, ai, ri, si+1⟩, the loss of
NNs (i.e., policy) can be calculated as follows:

policy = (max(Qtarget (si, ai)) − max(Qeval(si, ai)))2

2 (9)

= (ri + γmaxai+1 (Qtarget (si+1, ai+1)) − maxai (Qeval(si, ai))) ,

X. Zhao, J. Wu, H. Peng et al. Neural Networks 154 (2022) 56–67

w

b
n
t
s
a
(
a

4

l
i
e

here state si is input to the evaluation DNN to obtain the pre-
dicted maximum Q value maxai (Qeval(si, ai)) in the ith timestep,
the next state si+1 is input to the target DNN to calculate the
maximum Q value maxai+1 (Qtarget (si+1, ai+1)) in the next timestep,
and ri is the actual reword. Based on the Bellman equation, DDQN
takes the max(Qtarget (si, ai)) output from the target DNN as the
actual maximum Q value in timestep i and trains the evaluation
DNN through the back-propagation algorithm. It is worth noting
that DDQN does not update the target network through loss
but copies the parameters of the evaluation DNN to the target
DNN. In this way, DDQN effectively alleviates the over-estimation
problem often found in DRL. Since DDQN uses two DNNs to
simulate the policy π , the above is also the training process of
π .

4. Methodology

Fig. 1 illustrates the brain network representation learning
framework BN-GNN, which consists of three modules: network
building module, meta-policy module and GNN module. The net-
work building module provides the state space for the meta-
policy module. The meta one utilizes feedbacks (i.e., rewards)
of the GNN module to search for the optimal meta-policy π
continuously, and the GNN module performs brain network rep-
resentation learning according to the guidance (i.e., actions) of
the meta-policy. Next, we introduce the technical details of each
module.

4.1. Network building module

The network building module generates adjacency matrices
from the brain networks‘ initial weighted matrices, providing
state space for the meta-policy module. In GNN, feature aggre-
gation that relies on adjacency matrix A is essential. Therefore,
A should be appropriately designed to reflect the neighborhood
correlations because it directly affects the node feature repre-
sentation learning. Inspired by the previous work in Zhang et al.
(2018), we utilize KNN to construct reliable adjacency matrices to
advance learning brain network representation for GNNs. Specif-
ically, taking a brain instance G = (V , E), we utilize its weighted
matrix W = F(0) and KNN to obtain reliable neighbors V (i) of
any node vi ∈ V . If vi ∈ V (j) or vj ∈ V (i), then A(i, j) = 1 and
A(j, i) = 1, otherwise both are zero. After that, we calculate new
edge confidences to refine the reliable matrix A:

A(i, j) =

{
exp(−

F(0)(i) − F(0)(j)
), A(i, j) = 1

0, A(i, j) = 0,
(10)

where F(0)(i) is F(0)’s i-th row and vi’s initial feature embedding.
The module is also used to construct the subject network in
the state transition strategy, which will be introduced in the
following subsection.

4.2. Meta-policy module

The meta-policy module trains a policy that can be viewed
as meta-knowledge to determine the number of aggregations of
brain network features in GNN. As mentioned in Section 3.3, the
learning of the policy π is abstracted as an MDP that contains five
essential components, i.e., (S, A, π, REW ,R). Here, we give the
relevant definitions in the context of brain network embedding
in timestep i.

• State space (S): The state si ∈ S represents the adjacency
matrix of the brain instance.

• Action space (A): The action ai ∈ A determines the number of
iterations for feature aggregation that the brain network requires,

which is reflected in the number of GNN layers. Since the GNN

61
layer count is a positive integer, we define the index of each
action in the action space as the corresponding action value.

• Policy (π): The policy in timestep i outputs action ai accord-
ing to the input state si. Here we apply double deep q-network
(DDQN) presented in Section 3.4 to simulate and train the policy
and call the trained policy a meta-policy.

• Reward function (REW): The reward function outputs the
reward ri in timestep i. Since we expect to improve network
representation performance through policy-guided aggregations,
we intuitively define the current immediate reward ri as the dif-
ference (a decimal) between the current validation classification
performance and the performance of the previous timestep.

• Return (R): The return Ri in timestep i indicates the dis-
counted accumulation of all rewards in the interval [i, t]. Based
on the DDQN, we approximate the Q values output by the DNNs
in the DDQN to the rewards over different actions. Since DDQN
always chooses the action that maximizes return, it aligns with
the goal of standard MDP.

According to these definitions, the process of the meta-policy
module in each timestep i includes five stages: (1) Sample a brain
network and take its adjacency matrix as the current state si. (2)
Determine the number of layers of the GNN that processes the
current brain network according to the action ai corresponding
to the maximum Q value output by the policy π . (3) Calculate
the current reward ri based on performance changes (technical
details will be introduced in the following subsection). (4) Obtain
the next state si+1 with a new heuristic strategy for state tran-
sition. Concretely, we abstract the brain network of each subject
as a coarse node and construct a subject network according to
the network building module, where the initial node features are
obtained by vectorizing the weighted matrices. Then we realize
state transition through node sampling. For example, given the
current state si and action ai, we randomly sample a ai-hop neigh-
or of the coarse node corresponding to state si in the subject’s
etwork, where brain instance’s adjacency matrix corresponding
o the sampled neighbor is the next state si+1. In this way, the
tate transition obeys Markov, i.e., the next state si+1 is only
ffected by the current one si without considering previous states.
5) Record the process of this timestep and train the policy π
ccording to Eq. (9) and the back-propagation algorithm.

.3. GNN module

The GNN module contains two GNNs with a pooling layer to
earn brain network representations. The first GNN (called GNN1)
s used in the MDP to train the policy π . As defined in Section 4.2,
ach action is a positive integer in the interval [1, b], where b is

the total count of all possible actions. Since the action ai specifies
the number of feature aggregations and GNN achieves different
aggregations by controlling the number of layers, GNN1 needs
to stack j neural networks when ai = j (j is the index of ai in
A). Considering that the actions in different processes are usually
different, reconstructing GNN1 in each timestep is very time- and
space-consuming. To alleviate this problem, we use a parameter
sharing mechanism to construct a b-layer GNN1. For example,
given the current action ai = j, we only use the first j layers
of GNN1 to learn the current brain network Gi. The aggregation
process realized by GCN (Kipf & Welling, 2017) is as follows:

F(j) = ReLU (̂A · · · ReLU (̂AF(0)T(1)) · · · T(j)). (11)

After obtaining the final node feature matrix F(j), we apply the
pooling of Eq. (4) to obtain the network representation. Then
we use the back-propagation algorithm of Eq. (5) to train GNN1.
Since the current timestep only involves the first b layers of
GNN1, only the parameters of the first b layers are updated.

Compared with constructing a GNN for each network separately

X. Zhao, J. Wu, H. Peng et al. Neural Networks 154 (2022) 56–67

p

f

w
t

Algorithm 1 BN-GNN: GNN-based brain network representation
learning framework
Input: Brain network dataset D, number of timesteps t , number of all
ossible actions b, discount coefficient γ , epsilon probability ϵ, window

size of the history records w.
1: Generate adjacency matrices of brain networks and the subject

network via Eq. (10), A(i, j) = exp(−
F(0)(i) − F(0)(j)

) or 0.
2: Initialize two DNNs in DDQN and two GNNs with b layers.
3: Randomly sample a brain network from Dtrain and get the starting

state according to the adjacency matrix.
4: for i = 1, 2, . . . , t do
5: Select the action via Eq. (7), ai = argmaxai (Qeval(si, ai)) or a

random action.
6: Train the action value guided GNN1 in MDP via Eq. (5), LGNN =

−
∑

Gi∈Dtrain
log(E(i)T(l+1))Y(i)T .

7: Calculate the reward via Eq. (12), ri = REW (si, ai) = PER(si, ai) −
1
w

∑i−1
i−w PER(si, ai).

8: Sample the next state and record this process.
9: Train the policy in MDP via Eq. (9), Lpolicy = (max(Qtarget (si, ai))−

max(Qeval(si, ai)))2.
10: end for
11: Use the trained policy, meta-policy as meta-knowledge to guide the

training and testing of GNN2.
12: Obtain network representations of the test set Dtest and perform

brain analysis tasks.

in each timestep, the parameter sharing mechanism significantly
improves the training efficiency.

To calculate the current reward ri, we measure the classi-
ication performance of GNN1 on the validation set Dval. The
immediate reward in MDP is obtained as follows:

ri = REW (si, ai) = PER(si, ai) −
1
w

i−1∑
i−w

PER(si, ai), (12)

here PER represents the performance metric of the classifica-
ion result on the validation data (here we apply accuracy). w

indicates the number of historical records used to determine
benchmark performance 1

w

∑i−1
i−w PER(si, ai). Compared with only

considering the performance of the previous timestep (i− 1), the
benchmark based on multiple historical performances improves
the reliability of ri.

Since the training of GNN1 and policy in MDP are usually not
completed in the same timestep, it is inconvenient and inappro-
priate to use GNN1 to perform brain analysis tasks on the test set
Dtest . Therefore, after MDP, we apply the trained meta-policy to
guide the training and testing of a new GNN (called GNN2), where
GNN2 and GNN1 have the same aggregation type and parameter
sharing mechanism. The detailed steps of BN-GNN is presented
in Algorithm 1.

5. Experiments

Eight real-world brain network datasets are used to evaluate
our proposed BN-GNN. Our first step is to give the brain analy-
sis dataset information (Section 5.1), the comparison baselines,
and the experimental settings (Section 5.2). We then conduct
sufficient experiments on the brain network classification task
to address multiple research questions (RQs) about BN-GNN’s
effectiveness:

• RQ1. Is BN-GNN better than other advanced brain network
representation algorithms? (Section 5.3)

• RQ2. Can the three modules included in BN-GNN improve
brain network representations learning? (Section 5.4)

• RQ3. How do important hyperparameters in BN-GNN affect
model representation performance? (Section 5.5)
62
5.1. Datasets

The brain analysis tasks consist of eight brain network datasets
covering different neurological disorders. Table 2 shows the in-
ternal information of all the data. More specifically, they are
collected and processed as detailed below:

Human Immunodeficiency Virus Infection (HIV-DTI & HIV-
fMRI): Ragin et al. (2012) collected this raw data from two
modalities, i.e., DTI and fMRI. The subject data contains 70 in-
stances, where half the patients and half are healthy, with similar
profiles in age, gender, education level, etc. Following Ma et al.
(2017), we employ DPARSF (Yan & Zang, 2010) to preprocess the
fMRI data and then perform Gaussian smoothing on the images.
To eliminate noise and drift, we also apply linear trending and
bandpass filtering techniques. Further, we divide any instance
into 116 ROIs by AAL atlas (Tzourio-Mazoyer et al., 2002) and
discard 26 of them. We then harvest the network initial weighting
matrices for all subjects’ brain instances. For DTI, we first utilize
the FSL (Smith et al., 2004) with techniques such as noise filter-
ing, image correction, etc. to process DTI data. Then we obtain
the corresponding weighted matrices of brain networks with 90
regions.

Bipolar Disorder (BP-DTI & BP-fMRI): The dataset, which also
contains fMRI and DTI modalities, includes 45 healthy subjects
and 52 bipolar patients with similar profiles (Cao et al., 2015). For
fMRI, we employ the CONN (Whitfield-Gabrieli & Nieto-Castanon,
2012) to get the initial brain networks. Concretely, We first re-
align and co-register the original EPI images and then perform
normalization and smoothing. After that, confounding influences
caused by motion artifacts, cerebrospinal fluid, etc. will disappear.
In the end, each initial connectome is calculated from the marked
gray matter area. For the DTI data, we follow the data processing
strategy in Ma et al. (2017) to generate brain networks whose
regions are the same as those of the fMRI network.

Attention Deficit Hyperactivity Disorder (ADHD-fMRI) & Hy-
peractive Impulsive Disorder (HI-fMRI) & Gender (GD-fMRI):
The initial data was constructed from the whole brain fMRI at-
las (Craddock, James, Holtzheimer III, Hu, & Mayberg, 2012).
Following the work in Pan, Wu, Zhu, Long, and Zhang (2016),
we use the functional segmentation result CC200 from Craddock
et al. (2012), which divides each instance into two hundred ROIs.
In order to explore the relationship between ROIs, we record
the average value of each ROI in a specific voxel time course.
Similarly, we obtain the correlation between the two ROIs ac-
cording to the Pearson correlation between the two time courses,
and generate three reliable brain network instance sets with the
threshold specified in Pan et al. (2016). More processing is stated
in Craddock et al. (2012) and Pan et al. (2016).

Hearing Activity (HA-EEG): The raw electroencephalogram
(EEG) data was recorded from 61 healthy adults using 62 elec-
trodes (Hernandez-Perez et al., 2021). The participants were ei-
ther actively listening to individual words over headphones (ac-
tive condition) or watching a silent video and ignoring the speech
(passive condition). To transform the dataset into a usable ver-
sion, we perform source analysis using the fieldtrip toolkit (Oost-
enveld, Fries, Maris, & Schoffelen, 2011) with a cortical-sheet
based source model and a boundary element head model. Specif-
ically, we calculate the coherence of all sources and segment the
sources based on the 68 regions of the Desikan–Killiany cortical
atlas. Furthermore, we utilize the imaginary part of the coher-
ence spectrum as the connectivity metric to reduce the effect of
electric field spread (Nolte et al., 2004).

X. Zhao, J. Wu, H. Peng et al. Neural Networks 154 (2022) 56–67

(

5

b

e
e
G
a
b
b

L
a
b
u
w
c
t
e

Table 2
Statistics of brain network datasets.
Dataset BP-DTI BP-fMRI HIV-DTI HIV-fMRI ADHD-fMRI HI-fMRI GD-fMRI HA-EEG

Network instances 70 70 97 97 83 79 85 61
Healthy/Male/Active 35 35 45 45 46 44 36 21
Patient/Female/Passive 35 35 52 52 37 35 49 40
Nodes × Nodes 82 × 82 82 × 82 90 × 90 90 × 90 200 × 200 200 × 200 200 × 200 68 × 68
Fig. 2. Examples of brain networks of two subjects in fMRI modality. The subject above is from HIV, while below one is from BP. From left to right are the initial
weighted matrices W, the adjacency matrices A generated by the network building module (Eq. (10)), and the other matrices involved in the GCN aggregation process
Eq. (2)).
r,

t
p

.2. Baselines and settings

To evaluate BN-GNN, we compare it with multiple excellent
aselines whose information is as follows:
DeepWalk & Node2Vec (Grover & Leskovec, 2016; Perozzi, Al-

Rfou, & Skiena, 2014): The main idea of Deepwalk is to perform
random walks in the network, then generate a large number of
node sequences, further input these node sequences as samples
into word2vec (Mikolov, Chen, Corrado, & Dean, 2013), and fi-
nally obtain meaningful node representation vectors. Compared
with DeepWalk, Node2Vec balances the homophily and structural
equivalence of the network through biased random walks. Both
of them are commonly used baselines in network representation
learning.

GCN & GAT (Kipf & Welling, 2017; Velickovic et al., 2018):
Graph convolutional network (GCN) performs convolution ag-
gregations in the graph Fourier domain, while graph attention
network (GAT) performs aggregations in combination with the
attention mechanism. Both of them are outstanding GNNs

GCN+skip & GAT+skip: Following Li et al. (2019), we construct
GCN+skip and GAT+skip by adding residual skip-connections to
GCN and GAT, respectively.

GraphSAGE & FastGCN (Chen, Ma, & Xiao, 2018; Hamilton
t al., 2017): They are two improved GNN algorithms with differ-
nt sampling strategies. For the sake of computational efficiency,
raphSAGE only samples a predefined number of neighbor nodes
s objects to aggregate. Unlike GraphSAGE, which samples neigh-
or nodes, FastGCN samples all nodes, constructs a new topology
ased on the initial structure and encodes global information.
PR-GNN & GNEA & Hi-GCN (Bi et al., 2020; Jiang et al., 2020;

i et al., 2020): Three GNN-based baselines for brain network
nalysis, all of which contain methods for optimizing the initial
rain network generated by neuroimaging technology. PR-GNN
tilizes the regularized pooling layers to filter nodes in the net-
ork and uses GAT for feature aggregation. GNEA determines a
onstant number of neighbors for all nodes through the correla-
ion coefficient in each brain network. Hi-GCN uses the eigenv-
ctor-based pooling layers EigenPooling to generate multiple
63
coarse-grained sub-graphs from the initial network and then
aggregates network information hierarchically and generates net-
work representations.

SDBN (Wang et al., 2017): Instead of involving GNNs, it intro-
duces convolutional neural networks (CNNs) (Krizhevsky, Sutskeve
& Hinton, 2012) to perform connectome embedding for subjects’
brain instances.

For settings, we complete BN-GNN with GCN and GAT, re-
spectively, namely BN-GCN and BN-GAT. Moreover, we set the
otal number of timesteps t to 1000, the total number of all
ossible actions b to 3, the window size w of REW to 20, and

the discount coefficient γ to 0.95. For the epsilon probability
ϵ, we set it to decrease linearly in the first 20 timesteps, with
a starting probability of 1.0 and an ending probability of 0.05.
For all GNN-based methods, we use ReLU with a slope of 0.2 as
the activation operator of feature aggregations and use dropout
with a rate of 0.3 between every two adjacency neural networks.
For a fair comparison, we use Adam optimizers with learning
rates of 0.0005 and 0.005 to update the policy and GNN2. We
set the network representation dimension of all methods to 128
and employ the strategies mentioned in the corresponding papers
to adjust the parameters of baselines and show results with
the best settings. Besides, we use the same data split (|Dtrian| :

|Dval| : |Dtest | = 8 : 1 : 1) to repeat each experiment 10
times, where each experiment records the test result with the
highest verification value within 100 epochs. All experiments are
performed on the same server with two 20-core CPUs (126G) and
an NVIDIA Tesla P100 GPU (16G).

5.3. Model comparison (RQ1)

To compare the performance of all methods, we perform dis-
ease or gender prediction (i.e., brain network classification) tasks
on eight real-world datasets. Moreover, average accuracy and
AUC are utilized as measurement metrics. Considering that some
baselines are challenging to deal with the initial weighted ma-
trices of the brain networks that are almost complete graphs,
we perform representation learning for all methods on adja-
cency matrices generated by the network building module. Taking

X. Zhao, J. Wu, H. Peng et al. Neural Networks 154 (2022) 56–67

(

G
o
a
c

o
p
s
a
G
t
i
t
y
b
g
u
m
p
p
i
t
b
n
C
p
i
s
s
t
a
a

Table 3
Performance comparison of multiple algorithms on brain network classification tasks.
Method Layers BP-DTI BP-fMRI HIV-DTI HIV-fMRI ADHD-fMRI HI-fMRI GD-fMRI HA-EEG

DeepWalk – 0.520 ± 0.097 0.530 ± 0.134 0.514 ± 0.159 0.485 ± 0.130 0.512 ± 0.141 0.462 ± 0.148 0.550 ± 0.127 0.566 ± 0.270
Node2Vec – 0.530 ± 0.110 0.550 ± 0.111 0.514 ± 0.145 0.500 ± 0.172 0.525 ± 0.075 0.475 ± 0.122 0.562 ± 0.170 0.583 ± 0.200
PR-GNN 2 0.590 ± 0.186 0.630 ± 0.110 0.557 ± 0.174 0.585 ± 0.100 0.625 ± 0.167 0.600 ± 0.165 0.600 ± 0.145 0.650 ± 0.157
GNEA 3 0.560 ± 0.149 0.600 ± 0.134 0.557 ± 0.118 0.585 ± 0.196 0.550 ± 0.127 0.562 ± 0.160 0.612 ± 0.087 0.633 ± 0.221
HI-GCN 3 0.540 ± 0.162 0.600 ± 0.109 0.528 ± 0.192 0.571 ± 0.127 0.562 ± 0.128 0.562 ± 0.160 0.587 ± 0.148 0.616 ± 0.183
GraphSAGE 2 0.610 ± 0.192 0.610 ± 0.113 0.571 ± 0.202 0.600 ± 0.124 0.575 ± 0.127 0.575 ± 0.100 0.600 ± 0.165 0.716 ± 0.076
FastGCN 2 0.590 ± 0.113 0.620 ± 0.140 0.585 ± 0.134 0.628 ± 0.145 0.612 ± 0.180 0.600 ± 0.145 0.600 ± 0.175 0.700 ± 0.194
BN-GNN 1∼3 0.630 ± 0.167 0.640 ± 0.120 0.614 ± 0.111 0.642 ± 0.146 0.637 ± 0.130 0.612 ± 0.205 0.637 ± 0.141 0.733 ± 0.200
Gain – 2.0↑ 1.0↑ 2.9↑ 1.4↑ 1.2↑ 1.2↑ 2.5↑ 1.7↑

GCN 1 0.560 ± 0.101 0.600 ± 0.148 0.542 ± 0.178 0.557 ± 0.174 0.562 ± 0.150 0.587 ± 0.080 0.600 ± 0.122 0.650 ± 0.189
GCN 2 0.590 ± 0.130 0.610 ± 0.122 0.571 ± 0.180 0.600 ± 0.166 0.600 ± 0.165 0.587 ± 0.125 0.600 ± 0.108 0.666 ± 0.129
GCN 3 0.540 ± 0.180 0.600 ± 0.184 0.542 ± 0.189 0.585 ± 0.118 0.525 ± 0.122 0.562 ± 0.187 0.575 ± 0.150 0.616 ± 0.106
GCN+skip 3 0.590 ± 0.164 0.620 ± 0.116 0.585 ± 0.134 0.528 ± 0.111 0.562 ± 0.170 0.575 ± 0.160 0.600 ± 0.183 0.700 ± 0.163
BN-GCN 1∼3 0.610 ± 0.170 0.640 ± 0.120 0.614 ± 0.111 0.642 ± 0.172 0.637 ± 0.130 0.600 ± 0.165 0.625 ± 0.125 0.716 ± 0.197
Gain – 2.0↑ 2.0↑ 2.9↑ 4.2↑ 3.7↑ 1.3↑ 2.5↑ 1.6↑

GAT 1 0.570 ± 0.141 0.620 ± 0.172 0.542 ± 0.261 0.571 ± 0.169 0.562 ± 0.128 0.575 ± 0.203 0.612 ± 0.189 0.650 ± 0.203
GAT 2 0.590 ± 0.130 0.610 ± 0.157 0.585 ± 0.149 0.614 ± 0.111 0.600 ± 0.215 0.587 ± 0.137 0.612 ± 0.152 0.683 ± 0.174
GAT 3 0.550 ± 0.128 0.610 ± 0.144 0.571 ± 0.202 0.585 ± 0.149 0.550 ± 0.127 0.575 ± 0.160 0.612 ± 0.171 0.666 ± 0.235
GAT+skip 3 0.600 ± 0.184 0.610 ± 0.083 0.600 ± 0.153 0.557 ± 0.162 0.575 ± 0.169 0.587 ± 0.185 0.625 ± 0.111 0.700 ± 0.124
BN-GAT 1∼3 0.630 ± 0.167 0.640 ± 0.128 0.614 ± 0.181 0.642 ± 0.146 0.612 ± 0.180 0.612 ± 0.205 0.637 ± 0.141 0.733 ± 0.200
Gain – 3.0↑ 2.0↑ 1.4↑ 2.8↑ 1.2↑ 2.5↑ 1.2↑ 3.3↑

The first part compares the experimental results of multiple methods, while the second and third parts refine the representation performance of GCNs and GATs
with different layers. The bold and italicized values in each part represent the best and second-best results of all methods, respectively. ↑ indicates the improvement
%) of our BN-GNN compared to the best baseline of each part.
Fig. 3. Visualization of ablation experiments to verify the performance of the network building module on the two datasets.
CN as an example, Fig. 2 visualizes the transformation process
f the adjacency matrices of two subjects from the HIV-fMRI
nd BP-fMRI. According to the values displayed in Table 3, five
onclusions are reached:
(1) BN-GNN always obtains the highest average accuracy value

n all datasets, proving that its brain network representation
erformance is superior to the baselines. Specifically, the clas-
ification accuracy of BN-GNN on eight datasets is on average
bout 2.0% higher than that of the sub-optimal algorithm. (2) All
NN-based methods outperform traditional network representa-
ion methods (i.e., DeepWalk and Node2Vec). This phenomenon
s expected because the GNN architecture can better capture
he local structural features in brain networks, which in turn
ield more informative regional representations. In addition, in
rain network classification tasks, end-to-end learning strate-
ies in brain network classification tasks are often superior to
nsupervised representation learning methods. (3) GAT-based
ethods are generally better than GCN-based methods. Com-
ared with the latter, when layers are stacked over two, the
erformance of the former is usually not greatly degraded. This
s because the attention mechanism included in GAT alleviates
he over-smoothing problem on some datasets. (4) GNNs com-
ined with skip-connections (i.e., GCN+skip and GAT+skip) do
ot always enable deeper neural networks to perform better.
ompared with the best GCN and GAT models (in the last two
arts of Table 3), BN-GCN and BN-GAT have an average accuracy
mprovement of 2.5% and 2.1% on eight classification tasks, re-
pectively. Although these observations reveal the limitations of
kip-connections, they also confirm the hypothesis of this work
hat different brain networks require different aggregation iter-
tions. In other words, since the brain networks of real subjects
re usually different, customizing different GNN architectures for
64
different subjects is essential to improve network representation
performance and provide therapeutic intervention. (5) Though
GraphSAGE and FastGCN improve the efficiency or structure in-
formation mining capability of the original GCN, their perfor-
mance is still inferior to our BN-GNN. This phenomenon indicates
that searching suitable feature aggregation strategies for network
instances in brain network analysis may be more important than
exploring sampling or structural reconstruction strategies.

5.4. Ablation study (RQ2)

The classification results and analysis in Section 5.3 confirm
the superiority of GNN-based methods in processing brain net-
work data. Furthermore, we implement ablation studies to detect
the independent influence of the network building and meta-
policy modules contained in our proposed BN-GNN on the above
classification tasks. Specifically, for the network building mod-
ule, we compare the classification results based on the initial
weighted matrices and processed adjacency matrices on BP-fMRI
and HIV-fMRI, respectively. For the meta-policy module, we com-
pare the performance of BN-GNN and random-policy-based GNN
on four datasets. Furthermore, we show examples of practical use
of our idea on various input types to see better how it works.

Fig. 3 visualizes the accuracy and AUC scores of ablation stud-
ies for network building, from which we can obtain three key
observations: (1) Utilizing the adjacency matrices generated by
the network building module to replace the initial weighted
matrices greatly improves the classification performance of the
GNN-based methods under the two metrics. This phenomenon
indicates that our proposed network building module is beneficial
to promote the application of GNN in brain network analysis
studies. (2) The performance of SDBN on the initial matrices is

X. Zhao, J. Wu, H. Peng et al. Neural Networks 154 (2022) 56–67
Fig. 4. Visualization of ablation experiments to verify the performance of the meta-policy module on four datasets, where GCN+RP and GAT+RP apply a random-policy
instead of the meta-policy to guide the aggregation process of GCN and GAT.
Fig. 5. Visualization of classification results for 20 brain networks randomly sampled from BP-DTI, where different figures use different types of inputs/adjacency
matrices. From bottom to top, the y-axis represents the GCN model with y layers and the GCN model guided by our meta-policy. The x-axis represents the brain
network index. The colors from light to dark mean the average accuracy from low to high.
better than that on the adjacency matrices. On the one hand,
SDBN reconstructs the brain networks and reinforce the spatial
structure induction of the initial weighted matrices, thereby en-
abling the CNN to capture the highly non-linear features. On
the other hand, the sparse adjacency matrices generated by the
network building module may not be suitable for CNN-based
methods. Notably, the optimal results of SDBN are always infe-
rior to that of BN-GNN, indicating that it is meaningful to learn
topological brain networks based on GNN. (3) Even though GAT-
based methods (including PR-GNN and GAT) use the attention
technique to learn weights for different neighbors, they are still
difficult to deal with densely connected initial brain networks.
Thus, generating adjacency matrices (as shown in Fig. 2) for GNN
can improve brain network representation learning.

We replace the meta-policy module in BN-GNN with a
random-policy (randomly chooses an action for a given instance)
to construct the baselines of ablation experiments, namely
GCN+RP and GAT+RP. Fig. 4 illustrates the results of ablation
experiments for the meta-policy module, from which two con-
clusions can be drawn: (1) The performance of GCN+RP and
GAT+RP are worse than BN-GNN and original GNNs on ADHD-
fMRI, HI-fMRI, GD-fMRI, and HA-EEG. (2) Our BN-GNN is better
than the original GNNs. These phenomena once again imply that
the introduction of our meta-policy can effectively improve the
classification performance of brain networks.

To explore the practical application of our idea on differ-
ent input types, we illustrate the classification performance of
layer-fixed GCNs and GCN guided by meta-policy on BP-DTI
in Fig. 5. First, we observe Fig. 5(a) and find that single-layer
GCNs generally perform best when using initial weighted ma-
trices as inputs. Besides, GCN performance degrades drastically
when its model stack increases. This may be because the ini-
tial brain networks usually have a high connection density (as
shown in Fig. 2(a)), which leads to the over-smoothing prob-
lem of multi-layer GCNs during the learning process. Second,
Fig. 5(b) shows the classification results with the degree matrices
as inputs. Since the degree matrices do not encode neighbor
information (as shown in Fig. 2(b)), these GCNs degenerate into
fully-connected neural networks without feature aggregation.
Therefore, the brain network classification performance of mod-
els with different numbers of layers varies relatively smoothly.
Finally, after processing the initial data based on our network
building module, the optimal number of GCN layers required for
normalized matrices with reduced density becomes very differ-
ent, as shown in Fig. 2(c). In addition, reliable brain networks
65
improve the overall performance upper bound compared to the
brain classification of the first two types of inputs. This again
implies the importance of building reliable brain networks and
customizing the optimal number of aggregations. In particular,
our meta-policy is often able to find the optimal number of
model layers corresponding to brain instances for three input
types. Therefore, the GCN with our meta-policy (i.e., BN-GCN)
generally performs the best (shown in the first row of subfigures
in Fig. 2), even if the adjacency matrices have extremely large
or small connection densities. In future research, the network
building module can continue to serve brain network analysis.
And the meta-policy may be extended to other scenarios with
differentiated requirements for the number of model layers rather
than being limited to the application of GNNs.

5.5. Hyperparameter analysis (RQ3)

We also explore the floating perturbations of key hyperpa-
rameters in three modules of BN-GNN, namely the neighbor
pre-defined amount in the network building module, the action
set’s size in the meta-policy module, and the dimension of the
network representation in the GNN module. Fig. 6(a) shows that
increasing the number of neighbors (determined by k of KNN)
when building the adjacency matrix does not always yield better
network representations. The possible reason is that each region
in the brain network only has meaningful connections with a
limited number of neighbors. From Fig. 6(b), we observe that the
performance of BN-GNN is often the best when the number of
aggregations is 3. When the action space is further expanded,
BN-GNN still maintains a relatively stable performance. These
two phenomena verify that the best representation of most brain
networks can be obtained within 3 aggregations, and BN-GNN is
robust to the fluctuation of action set size (i.e., all possible actions,
which is also the maximum aggregation iterations that may oc-
cur). The results in Fig. 6(c) show that unless the dimension is too
small, the performance of BN-GNN will not fluctuate excessively
by updating the embedding dimension.

6. Conclusions and future work

In this work, a GNN-based brain network representation frame-
work, namely BN-GNN is proposed. In particular, BN-GNN com-
bines DRL and GNN for the first time to achieve customized ag-
gregation for different networks, effectively improving traditional
GNNs in brain network representation learning. Experimental

X. Zhao, J. Wu, H. Peng et al. Neural Networks 154 (2022) 56–67

r
a
f
p
s
t
i
i
e
t
r
t
m
a
a
p
u
f
p
a

D

c
t

A

R
C
H
F
S
1
S
t

R

A

A

A

B

B

Fig. 6. Hyperparameter sensitivity analysis of BN-GNN on the two datasets.
C

C

D

G

G

G

G

H

H

H

H

J

K

K

K

L

L

L

L

L

esults imply that BN-GNN consistently outperforms state-of-the-
rt baselines on eight brain network disease analysis tasks. In
uture work, we will improve BN-GNN from both technical and
ractical aspects. Technically, we discuss the idea of automatically
earching hyperparameters for our model BN-GNN as a future
rend. Practically, we state the explainability of our model, which
s an emerging area in brain network analysis. Specifically, even
f we observe that changes in the number of neighbors have little
ffect on the performance of BN-GNN, setting this hyperparame-
er manually is not an optimal solution. Therefore, multi-agent
einforcement learning can be introduced into BN-GNN to au-
omatically search for the optimal brain network structure and
odel layer number. Besides, for applications of brain disease
nalysis, the explainability of the classification results is often
s important as the accuracy. In other words, while successfully
redicting a damaged brain network, it is also necessary to
nderstand which regions within the network are responsible
or the damage. Therefore, to improve the explainability, better
ooling or interpretation techniques like attention-based pooling
nd grad-cam, can be introduced to BN-GNN.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

The authors of this paper were supported by the National Key
&D Program of China through grant 2021YFB1714800, NSFC,
hina through grants U20B2053 and 62073012, S&T Program of
ebei, China through grant 20310101D, Beijing Natural Science
oundation, China through grants 4202037 and 4222030. Philip
. Yu was supported by the NSF under grants III-1763325, III-
909323, and SaTC-1930941. We also thank CAAI-Huawei Mind-
pore Open Fund and Huawei MindSpore platform for providing
he computing infrastructure.

eferences

lexander, A. L., Lee, J. E., Lazar, M., & Field, A. S. (2007). Diffusion tensor imaging
of the brain. Neurotherapeutics, 4(3), 316–329.

rslan, S., Ktena, S. I., Glocker, B., & Rueckert, D. (2018). Graph saliency maps
through spectral convolutional networks: Application to sex classification
with brain connectivity. In Graphs in biomedical image analysis and integrating
medical imaging and non-imaging modalities (pp. 3–13). Springer.

rulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep
reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6),
26–38.

i, X., Liu, Z., He, Y., Zhao, X., Sun, Y., & Liu, H. (2020). GNEA: A graph neural
network with ELM aggregator for brain network classification. Complexity,
2020.

raak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related
changes. Acta Neuropathologica, 82(4), 239–259.

Cao, B., He, L., Wei, X., Xing, M., Yu, P. S., Klumpp, H., et al. (2017). t-bne:
Tensor-based brain network embedding. In International conference on data
mining (pp. 189–197). SIAM.
66
Cao, B., Zhan, L., Kong, X., Yu, P. S., Vizueta, N., Altshuler, L. L., et al. (2015).
Identification of discriminative subgraph patterns in fMRI brain networks in
bipolar affective disorder. In International conference on brain informatics and
health (pp. 105–114). Springer.

Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., & Sun, X. (2020). Measuring and relieving
the over-smoothing problem for graph neural networks from the topological
view. In Proceedings of the AAAI conference on artificial intelligence: Vol. 34,
(pp. 3438–3445).

hen, J., Ma, T., & Xiao, C. (2018). FastGCN: Fast learning with graph convo-
lutional networks via importance sampling. In International conference on
learning representations.

raddock, R. C., James, G. A., Holtzheimer III, P. E., Hu, X. P., & Mayberg, H. S.
(2012). A whole brain fMRI atlas generated via spatially constrained spectral
clustering. Human Brain Mapping, 33(8), 1914–1928.

ou, Y., Liu, Z., Sun, L., Deng, Y., Peng, H., & Yu, P. S. (2020). Enhancing graph
neural network-based fraud detectors against camouflaged fraudsters. In
Proceedings of the ACM international conference on information knowledge
management (pp. 315–324).

ao, H., & Ji, S. (2019). Graph u-nets. In International conference on machine
learning (pp. 2083–2092). PMLR.

ao, Y., Yang, H., Zhang, P., Zhou, C., & Hu, Y. (2020). Graph neural architecture
search. In International joint conference on artificial intelligence: Vol. 20, (pp.
1403–1409).

rover, A., & Leskovec, J. (2016). Node2vec: Scalable feature learning for
networks. In Proceedings of the ACM SIGKDD international conference on
knowledge discovery data mining (pp. 855–864).

urbuz, M. B., & Rekik, I. (2021). MGN-Net: A multi-view graph normalizer
for integrating heterogeneous biological network populations. Medical Image
Analysis, 71, Article 102059.

amilton, W. L., Ying, Z., & Leskovec, J. (2017). Inductive representation learning
on large graphs. In NeurIPS (pp. 1025–1035).

ernandez-Perez, H., Mikiel-Hunter, J., McAlpine, D., Dhar, S., Boothalingam, S.,
Monaghan, J. J. M., et al. (2021). Understanding degraded speech leads to
perceptual gating of a brainstem reflex in human listeners. PLOS Biology, 19,
1–37.

uang, Y., & Mucke, L. (2012). Alzheimer mechanisms and therapeutic strategies.
Cell, 148(6), 1204–1222.

uettel, S. A., Song, A. W., McCarthy, G., et al. (2004). Functional magnetic
resonance imaging, Vol. 1. MA: Sinauer Associates Sunderland.

iang, H., Cao, P., Xu, M., Yang, J., & Zaiane, O. (2020). Hi-GCN: A hierarchical
graph convolution network for graph embedding learning of brain network
and brain disorders prediction. Computers in Biology and Medicine, 127, Article
104096.

ipf, T. N., & Welling, M. (2017). Semi-supervised classification with
graph convolutional networks. In International conference on learning
representations.

rizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. Advances in Neural Information
Processing Systems, 25, 1097–1105.

tena, S. I., Parisot, S., Ferrante, E., Rajchl, M., Lee, M., Glocker, B., et al. (2018).
Metric learning with spectral graph convolutions on brain connectivity
networks. NeuroImage, 169, 431–442.

ai, K. -H., Zha, D., Zhou, K., & Hu, X. (2020). Policy-GNN: Aggregation op-
timization for graph neural networks. In Proceedings of the ACM SIGKDD
international conference on knowledge discovery data mining (pp. 461–471).

eCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553),
436–444.

i, G., Muller, M., Thabet, A., & Ghanem, B. (2019). Deepgcns: Can gcns go as deep
as cnns? In Proceedings of the IEEE/CVF international conference on computer
vision (pp. 9267–9276).

i, X., Zhou, Y., Dvornek, N. C., Zhang, M., Zhuang, J., Ventola, P., et al. (2020).
Pooling regularized graph neural network for fmri biomarker analysis. In
International conference on medical image computing and computer-assisted
intervention (pp. 625–635). Springer.

iu, Y., He, L., Cao, B., Yu, P. S., Ragin, A. B., & Leow, A. D. (2018). Multi-view
multi-graph embedding for brain network clustering analysis. In Proceedings
of the AAAI conference on artificial intelligence: Vol. 32, (pp. 117–124). AAAI
Press.

http://refhub.elsevier.com/S0893-6080(22)00250-7/sb1
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb1
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb1
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb2
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb2
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb2
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb2
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb2
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb2
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb2
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb3
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb3
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb3
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb3
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb3
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb4
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb4
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb4
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb4
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb4
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb5
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb5
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb5
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb6
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb6
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb6
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb6
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb6
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb7
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb7
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb7
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb7
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb7
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb7
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb7
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb8
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb8
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb8
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb8
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb8
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb8
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb8
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb10
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb10
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb10
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb10
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb10
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb12
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb12
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb12
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb13
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb13
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb13
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb13
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb13
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb15
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb15
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb15
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb15
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb15
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb17
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb17
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb17
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb17
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb17
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb17
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb17
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb18
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb18
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb18
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb19
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb19
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb19
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb20
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb20
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb20
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb20
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb20
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb20
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb20
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb22
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb22
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb22
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb22
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb22
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb23
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb23
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb23
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb23
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb23
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb25
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb25
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb25
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb27
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb27
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb27
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb27
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb27
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb27
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb27
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb28
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb28
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb28
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb28
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb28
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb28
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb28

X. Zhao, J. Wu, H. Peng et al. Neural Networks 154 (2022) 56–67

L

M

M

M

N

N

O

O

P

S

S

T

U

V

V

Y

Y

Z

Z

Z

Z

iu, F., Xue, S., Wu, J., Zhou, C., Hu, W., Paris, C., et al. (2020). Deep learning for
community detection: Progress, challenges and opportunities. In International
joint conference on artificial intelligence (pp. 4981–4987).

Ma, G., Ahmed, N. K., Willke, T. L., Sengupta, D., Cole, M. W., Turk-Browne, N.
B., et al. (2019). Deep graph similarity learning for brain data analysis. In
Proceedings of the ACM international conference on information and knowledge
management (pp. 2743–2751).

Ma, G., He, L., Lu, C. -T., Shao, W., Yu, P. S., Leow, A. D., et al. (2017). Multi-view
clustering with graph embedding for connectome analysis. In Proceedings of
the ACM international conference on information knowledge management (pp.
127–136).

a, X., Wu, J., Xue, S., Yang, J., Zhou, C., Sheng, Q. Z., et al. (2021). A
comprehensive survey on graph anomaly detection with deep learning. IEEE
Transactions on Knowledge and Data Engineering.

ikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of
word representations in vector space. In International conference on learning
representations.

nih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et
al. (2015). Human-level control through deep reinforcement learning. Nature,
518(7540), 529–533.

ishi, T., Otaki, K., Hayakawa, K., & Yoshimura, T. (2018). Traffic signal control
based on reinforcement learning with graph convolutional neural nets. In
International conference on intelligent transportation systems (pp. 877–883).
IEEE.

olte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., & Hallett, M. (2004).
Identifying true brain interaction from EEG data using the imaginary part
of coherency. Clinical Neurophysiology, 115(10), 2292–2307.

ono, K., & Suzuki, T. (2019). Graph neural networks exponentially lose ex-
pressive power for node classification. In International conference on learning
representations.

ostenveld, R., Fries, P., Maris, E., & Schoffelen, J. -M. (2011). FieldTrip:
Open source software for advanced analysis of MEG, EEG, and invasive
electrophysiological data. Computational Intelligence and Neuroscience, 2011.

Pan, S., Wu, J., Zhu, X., Long, G., & Zhang, C. (2016). Task sensitive feature
exploration and learning for multitask graph classification. IEEE Transactions
on Cybernetics, 47(3), 744–758.

Parisot, S., Ktena, S. I., Ferrante, E., Lee, M., Guerrero, R., Glocker, B., et al.
(2018). Disease prediction using graph convolutional networks: Application
to autism spectrum disorder and Alzheimer’s disease. Medical Image Analysis,
48, 117–130.

Peng, H., Li, J., Gong, Q., Ning, Y., Wang, S., & He, L. (2020). Motif-matching based
subgraph-level attentional convolutional network for graph classification.
In Proceedings of the AAAI conference on artificial intelligence: Vol. 34, (pp.
5387–5394).

Peng, H., Zhang, R., Dou, Y., Yang, R., Zhang, J., & Yu, P. S. (2021). Reinforced
neighborhood selection guided multi-relational graph neural networks. ACM
Transactions on Information Systems, 1–46.

Peng, H., Zhang, R., Li, S., Cao, Y., Pan, S., & Yu, P. (2022). Reinforced, incremental
and cross-lingual event detection from social messages. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 1.

erozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social
representations. In Proceedings of the ACM SIGKDD international conference on
knowledge discovery data mining (pp. 701–710).
67
Ragin, A. B., Du, H., Ochs, R., Wu, Y., Sammet, C. L., Shoukry, A., et al. (2012).
Structural brain alterations can be detected early in HIV infection. Neurology,
79(24), 2328–2334.

mith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E.,
Johansen-Berg, H., et al. (2004). Advances in functional and structural MR
image analysis and implementation as FSL. Neuroimage, 23, S208–S219.

un, Q., Li, J., Peng, H., Wu, J., Ning, Y., Yu, P. S., et al. (2021). SUGAR:
Subgraph neural network with reinforcement pooling and self-supervised
mutual information mechanism. In Proceedings of the web conference (pp.
2081–2091).

zourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Del-
croix, N., et al. (2002). Automated anatomical labeling of activations in SPM
using a macroscopic anatomical parcellation of the MNI MRI single-subject
brain. Neuroimage, 15(1), 273–289.

rbanski, M., De Schotten, M. T., Rodrigo, S., et al. (2008). Brain networks
of spatial awareness: Evidence from diffusion tensor imaging tractography.
Journal of Neurology Neurosurgery and Psychiatry, 79(5), 598–601.

an Den Heuvel, M. P., & Pol, H. E. H. (2010). Exploring the brain net-
work: A review on resting-state fMRI functional connectivity. European
Neuropsychopharmacology, 20(8), 519–534.

an Hasselt, H., Guez, A., & Silver, D. (2016). Deep reinforcement learning
with double q-learning. In Proceedings of the AAAI conference on artificial
intelligence: Vol. 30.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y.
(2018). Graph attention networks. In International conference on learning
representations.

Wang, S., He, L., Cao, B., Lu, C. -T., Yu, P. S., & Ragin, A. B. (2017). Structural
deep brain network mining. In Proceedings of the ACM SIGKDD international
conference on knowledge discovery data mining (pp. 475–484).

Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: A functional con-
nectivity toolbox for correlated and anticorrelated brain networks. Brain
Connectivity, 2(3), 125–141.

Xing, X., Li, Q., Yuan, M., Wei, H., Xue, Z., Wang, T., et al. (2021). DS-
GCNs: Connectome classification using dynamic spectral graph convolution
networks with assistant task training. Cerebral Cortex, 31(2), 1259–1269.

an, Z., Ge, J., Wu, Y., Li, L., & Li, T. (2020). Automatic virtual network embedding:
A deep reinforcement learning approach with graph convolutional networks.
IEEE Journal on Selected Areas in Communications, 38(6), 1040–1057.

an, C., & Zang, Y. (2010). DPARSF: A MATLAB toolbox for ‘‘pipeline’’ data analysis
of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 13.

ha, D., Lai, K. -H., Zhou, K., & Hu, X. (2019). Experience Replay Optimization.
In International joint conference on artificial intelligence.

hang, X., He, L., Chen, K., Luo, Y., Zhou, J., & Wang, F. (2018). Multi-view
graph convolutional network and its applications on neuroimage analysis
for Parkinson’s disease. In AMIA annual symposium proceedings: Vol. 2018,
(pp. 1147–1156). American Medical Informatics Association.

hang, Y., & Huang, H. (2019). New graph-blind convolutional network for
brain connectome data analysis. In International conference on information
processing in medical imaging (pp. 669–681). Springer.

hong, P., Wang, D., & Miao, C. (2020). EEG-based emotion recognition using
regularized graph neural networks. IEEE Transactions on Affective Computing,
1.

http://refhub.elsevier.com/S0893-6080(22)00250-7/sb32
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb32
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb32
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb32
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb32
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb34
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb34
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb34
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb34
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb34
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb35
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb35
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb35
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb35
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb35
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb35
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb35
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb36
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb36
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb36
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb36
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb36
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb38
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb38
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb38
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb38
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb38
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb39
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb39
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb39
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb39
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb39
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb40
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb40
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb40
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb40
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb40
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb40
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb40
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb41
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb41
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb41
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb41
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb41
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb41
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb41
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb42
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb42
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb42
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb42
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb42
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb43
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb43
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb43
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb43
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb43
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb45
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb45
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb45
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb45
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb45
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb46
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb46
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb46
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb46
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb46
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb48
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb48
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb48
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb48
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb48
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb48
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb48
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb49
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb49
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb49
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb49
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb49
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb50
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb50
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb50
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb50
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb50
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb51
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb51
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb51
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb51
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb51
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb54
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb54
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb54
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb54
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb54
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb55
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb55
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb55
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb55
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb55
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb56
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb56
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb56
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb56
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb56
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb57
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb57
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb57
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb59
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb59
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb59
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb59
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb59
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb59
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb59
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb60
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb60
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb60
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb60
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb60
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb61
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb61
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb61
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb61
http://refhub.elsevier.com/S0893-6080(22)00250-7/sb61

	Deep reinforcement learning guided graph neural networks for brain network analysis
	Introduction
	Related work
	Graph neural networks
	Reinforcement learning guided graph neural networks
	GNN-based brain network representation learning

	Preliminaries
	Problem formulation
	Learning network representations with layer-fixed GNN
	Markov decision process
	Solving MDP with deep reinforcement learning

	Methodology
	Network building module
	Meta-policy module
	GNN module

	Experiments
	Datasets
	Baselines and settings
	Model comparison (RQ1)
	Ablation study (RQ2)
	Hyperparameter analysis (RQ3)

	Conclusions and future work
	Declaration of competing interest
	Acknowledgments
	References

